ЕСТЬ ИДЕЯ: LoRa, LPWAN, LoRaWAN

LPWAN (англ. Low-power Wide-area Network — «энергоэффективная сеть дальнего радиуса действия») — беспроводная технология передачи небольших по объёму данных на дальние расстояния, разработанная для распределённых сетей интернета вещей.

просмотров: 7312.04.2020 12:05:09 Alexey2791

Технология модуляции LoRa была разработана компанией Semtech для применения в сетях LPWA.

Уникальность модуляции LoRa — это высокая чувствительность приемника (до -148 dBm) и передача данных при условии, что несущий сигнал существенно ниже уровня «шума». 

Спецификация LoRaWAN представляет собой широкополосный сетевой протокол малой мощности (LPWA), предназначенный для беспроводного подключения «вещей», к региональным, национальным или глобальным сетям и ориентирован на основные требования к Интернету, такие как двунаправленная связь, сквозная безопасность, мобильность и услуги локализации.

Сетевая архитектура LoRaWAN развертывается в топологии «звезда - звезда», в которой шлюзы ретранслируют сообщения между конечными устройствами и центральным сетевым сервером. Шлюзы подключаются к сетевому серверу через стандартные IP-соединения и работают как прозрачный мост, просто преобразуя RF-пакеты в IP-пакеты и наоборот. Беспроводная связь использует преимущества Long Range (Диапазон Дальнего Действия) для физического уровня LoRa, позволяя одноточечное соединение между конечным устройством и одним или несколькими шлюзами. Все режимы способны к двунаправленной связи, и есть поддержка групп многоадресной адресации для эффективного использования спектра во время таких задач, как модернизация прошивки по воздуху (FOTA) или другие сообщения массового распространения.

Характеристики определяют параметры физического уровня (LoRaWAN) устройства для инфраструктуры (LoRa®) и, таким образом, обеспечивают бесшовную интероперабельность между производителями, о чем свидетельствует программа сертификации устройств.

Хотя спецификация определяет техническую реализацию, она не определяет какую-либо коммерческую модель или тип развертывания (публичный, коллективный, частный, корпоративный), и поэтому предлагает отрасли свободу инноваций и дифференциации того, как она используется.

 

Напомню, что термином IoT (Internet of Things) обозначают различные устройства, которые используют выход в сеть для взаимодействия друг с другом. К примеру, умная розетка подключается к Интернету не затем, чтобы сидеть в социальных сетях. Она получает из Сети команды, которые отправляет ее владелец. И она вещь. Вещь, которая пользуется Интернетом.

К буму IoT готовились давно. И почти сразу стало ясно, что для стабильной работы существующие стандарты передачи данных подходят мало.


Зачем что-то новое?


На первый взгляд, у нас уже есть готовые и обкатанные решения. Wi-Fi, LTE, почему не использовать их?

Причин несколько. Представим себе дом на 400 квартир, в каждом из которых стоит два водосчетчика и электросчетчик. Допустим, это современный дом, и каждый счетчик передает показания в Интернет.

Объем. На один жилой дом из 400 квартир придется 1200 счетчиков-пользователей. У них будет копеечный траффик, но если все они будут висеть, к примеру, на базовой станции LTE, то места для людей на этой базовой станции уже не останется. И это один дом. А ведь базовую станцию, обычно, ставят на микрорайон или даже больше.

Потребление. Если электросчетчику еще можно обеспечить питание, то тянуть кабель к водосчетчику не слишком удобно. Значит радиомодуль водосчетчика должен работать от батарейки. Но даже хорошую батарейку Wi-Fi и LTE съедят за несколько суток. Мы же хотим, чтобы менять элемент питания не приходилось минимум год.

Другие приоритеты. Нам не нужен канал связи в 5 мбит/c, чтобы раз в сутки передать, сколько кубов воды набежало по каждой квартире. Хватит считанных бит. Мы ограничены по мощности передатчика, надо чтобы он не ел батарейку. Значит, можно использовать правило «больше энергии в один бит – выше вероятность приема» таким образом, что канал связи на минимальной скорости и с минимальной мощностью гарантированно пройдет нужное расстояние. Даже если сигнал будет ниже уровня шума.

После тщательного анализа рынка компания Интерсвязь приняла решение строить свою сеть на базе стандарта LoRa.

Что такое LoRa?


Строго говоря, аббревиатурой LoRa (Long Range) обозначают лишь вид модуляции, то есть уровень l1 по модели OSI. Протокол канального уровня носит имя LoRaWAN. Но чаще всего «Лорой» называют совокупную систему, использующую LoRa на физическом и LoRaWAN на канальном уровне.

Работает это следующим образом. Базовая станция слушает эфир в заданном диапазоне частот. Когда она слышит запрос от какого-либо из устройств, то отвечает ему на частоте обращения. Ширина канала при этом составляет 125 кГц, максимальная скорость – чуть более 5 килобит/c. Да-да, вы не ослышались. Именно 5 и именно килобит/c. Этот стандарт Интернета вещей не создан для просмотра потокового видео. Его задача максимально быстро и гарантированно передать небольшое сообщение от датчика на базовую станцию. В зависимости от радиоусловий выбирается оптимальный набор параметров связи. За это отвечает SF (spreading factor) – коэффициент, к которому привязываются параметры передачи и приема. SF – это целое число, в стандарте он предусмотрен от 12 до 7. Чем выше SF, тем лучше помехозащищенность линии, но тем ниже скорость и тем больше времени в эфире занимает передача. Для примера, максимальная помехозащищенность достигается на SF=12. При этом время пакета в эфире составляет 2,466 сек, а скорость – 292 бит/сек.

Однако чем больше датчиков будут использовать базовую станцию, тем больше времени в эфире они займут. Потому, при хороших радиоусловиях, SF будет меньше. Растет скорость — падает время передачи.

Пакеты принимаются базовой станцией (в архитектуре LoRa ее чаще называют шлюзом), однако обрабатывает их следующее звено цепи – сетевой сервер. Этот сервер отвечает за управление всеми шлюзами, он решает через какой шлюз общаться с датчиком (если датчик слышно через несколько шлюзов) и определяет еще ряд важных параметров.

Однако сетевой сервер не обрабатывает полезную информацию из пакетов. Это делает следующее и самое важное звено – сервер приложений. Именно на сервере приложений происходит расшифровка показаний от датчиков, они в понятной форме раздаются либо в биллинг, либо в интерфейс потребителю, либо в другое заданное место.


Почему именно LoRa?


На данный момент существует несколько десятков стандартов Интернет-вещей. Часть из них универсальны, часть приспособлены решать свой круг задач. Все они более-менее придерживаются вышеописанных принципов. Есть даже стандарты на базе Wi-Fi и LTE. Так почему именно LoRa?

Причин несколько:

  1. LoRa использует частотный диапазон, разрешенный для использования в России. Существуют системы LoRa для диапазона 433 МГц, но в нашей стране больше прижились частоты из диапазона 868. Там у нас есть 1,5 МГц нелицензируемого спектра. 864-865 МГц и 868,7-869,2. В первом интервале у нас есть ограничение по времени нахождения передатчика в эфире (не более 0,1%) и по мощности (не более 25 мВТ). Во втором – только по мощности (те же 25 мВт). Так же есть оговорки по поводу использования вблизи аэропортов. Как уже было упомянуто, ширина канала LoRa – 125 кГц. В стандарте предусмотрены 250 и 500, но в России их обычно не используют. Итак, в 1,5 Мгц нам надо «запихнуть» 8 основных частот и одну резервную (RX2, второе окно, которое используется, если не проходит связь по основному каналу). Это возможно? Если строго придерживаться рекомендаций разработчика Semtech, то защитный интервал между каналами должен составлять 75 кГЦ. Значит, удастся разместить только 7 каналов. Не 9, но тоже хорошо. Есть надежда, что со временем ГКРЧ даст разрешение на расширение этого спектра.
  2. LoRa как раз разрабатывалась для работы на мощности 25 мВт. И тут не нарушаем. Пусть вас не смущает столь низкий уровень – технология может работать ниже уровня шума.
  3. LoRa – это открытый стандарт. Чипы для конечных устройств в свободной продаже, есть вся документация, и она открыта любому желающему. Датчики и радиомодули под этот стандарт только в России делают несколько компаний. Она не «вещь в себе», даже если пропадет один из производителей, останутся другие.
  4. LoRa имеет хороший радиус действия, она может принимать информацию от устройств в подвале дома или в километре от базовой станции. На самом деле, может принять информацию и от датчика в 4 километрах городских условий. Но тут страдает стабильность, поскольку начинается потеря пакетов. Однако, километр или два мы имеем.
  5. Датчики LoRa живут от батарейки минимум год. А то и больше. Тут есть зависимость от класса датчика (А, В или С). Самый живучий – А-класс — может продержаться несколько лет.





LoRaWAN имеет три разных класса конечных устройств для удовлетворения различных потребностей, отраженных в широком спектре приложений:

  • Класс A - двунаправленные конечные устройства c наименьшей мощностью:

    Класс А должен поддерживаться всеми конечными устройствами LoRaWAN по умолчанию. Передача всегда инициируется конечным устройством и полностью асинхронна. Каждая передача по восходящей линии связи может быть отправлена в любое время и за ней следуют два коротких окна нисходящей линии связи, что дает возможность для двунаправленной связи или команд управления сетью, если это необходимо. Это протокол типа ALOHA.

    Конечное устройство может войти в режим с низким энергопотреблением в зависимости от его индивидуальных настроек. Это делает класс A самым энергоэффективным и время жизни сенсора от 5 лет и выше, в то же время позволяя осуществлять связь по восходящей линии связи в любое время.

    Поскольку связь по нисходящей линии связи всегда должна следовать за передачей по восходящей линии связи с расписанием, определенным приложением конечного устройства, связь по нисходящей линии связи должна буферизоваться на сетевом сервере до следующего события восходящей линии связи.

  • Класс B - Двунаправленные конечные устройства с определенным временем ожидания нисходящего потока

    В дополнение к начальным окнам приема класса А, устройства класса B синхронизируются с сетью с использованием периодических маяков и открывают «слоты для проверки» нисходящего потока по расписанию. Это обеспечивает сети возможность отправлять нисходящую связь с определенной задержкой, но за счет некоторого дополнительного энергопотребления в конечном устройстве. Задержка программируется до 128 секунд для разных приложений, а дополнительное энергопотребление достаточно низкое, чтобы оставаться в силе для приложений с батарейным питанием.

  • Класс C - двунаправленные конечные устройства с наименьшей задержкой:

    В дополнение к структуре класса A в восходящей линии связи, за которой следуют два окна нисходящей линии связи, класс C дополнительно уменьшает задержку на нисходящей линии связи, постоянно поддерживая прием на конечном устройстве, когда устройство не передает (полудуплекс). Исходя из этого, сетевой сервер может инициировать передачу по нисходящей линии связи в любое время, если приемник конечного устройства открыт, поэтому нет задержки. Компромиссом является утечка мощности приемника (до ~ 50 мВт), и поэтому класс C подходит для приложений, где имеется непрерывная мощность.


Читайте также